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Although the hydrosilation of ketones is catalyzed readily
by a number of transition-metal compounds,' organic esters have
previously been regarded as inert.” Recently, Buchwald and
co-workers established that catalytic quantities iif the titanium
complexes Cp.TiCly/n-BuLi or Ti{(O-i-Pr)y and (EtO):S+H
reduce esters to alcohols (after aqueous wirkup).! We now
report that manganese acetyl crmmplexes (LY CO)MnC(O)YCH:
{L = PPhy, (1); CO, (2)] catalyze the hydrosilation of esters
RC(=0)OR’ to give successively silyl acetal RCH{OSiR"' )OR’,
then ether RCHOR’ ¢ or alkoxysilane products RCH,OSiR”;
and R'OSiR” ;."

Addition of 1.5—3.0 mol % of 1 tir a C¢Dy, salution containing
ethyl acetate and PhSiH; exathermically transformed this ester
within 15 min to ethyl ether (85%) and PhSiH(OEt), {(eq 1).F
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With the precatalyst 2, the slower reactions quantitatively gave
Et-O after 1.5 h. Under similar ctindititms, the less effective
Mn{CO);CH: and Mn(CO)sBr catalysts converted CH:CO-Et
over 4 h to Et-0O (85 and 55%), in addition to the silyl acetals
PhSiH:_ JOCH(CHNOEt], (x = 1, 2). In contrast, Mn{CO)s-
{SiMe->Ph), Mn(CO)s(SiHPh»), and Mn»{CO); were inactive.
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The ruile of silyl acetal intermedrates during catalytic ester
hydrosilation was prabed by switching to Ph.SiH» and PhMe;-
SiH (egs 2 and 3). Hydrosilation of CH:CO:Et by Ph,SiHa
(1.2 equiv) and 3% 1 (30 min) gave Ph,SiH|OCH(CH)OE!]
{3) (95% NMR yield; isrlated, 81%) and Ph.SiH{OEt) (5%)."
With 2.2 equiv of Ph:SiHa, however, 3 smoothly converted to
ether and (Ph:HSi1):0. Using 2 as the catalyst (1.2 equiv of
Ph,SiH») again slirwed the reaction (2.5 h tir consume the ester)
but also yielded a 2:1 mixture iif 3 and Ph,Si|OCH(CH;)OEt|»
(4) (eq 2). Reaction of this mixture with 1.2 equiv of PhSiH:
and fresh 2 for 2 h produced Et-O (88%) and the alkoxysilanes
Ph,SiH(OEt) and PhSiH{OE?)..
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Treatment of CH:CO:Et with 1.2 equiv of PhMe:SiH and
3% 2 (eq 3) for 1.75 h gave PhMe SiOCH(CH 1)OEt (5) (89%
NMR yield; isolated, 84%) plus 12% PhMe,SiOCH,CH; (6).
Using excess PhMe,SiH (2.2 equiv) in this reactiim affirded a
2:1 mixture of 5 and 6 but nir Et2O. 1In contrast, PhaSiH: plus
3% 2 converted 5 over 2 h to Et:0 (68%), PhMe.Si0OSiHPh,
and a 1:1 mixture of the alkoxysilanes Ph,SiH{OCH:CH) and
6. The yield of ether increased tir 84% when 1.1 equiv of
PhSiH: was used tir reduce 5.

The results of treating a variety uf esters with PhSiH; and
3% 1 appear in Table 1. All esters were consumed within 1 h
[the faster reactions (<0.5 h) were exothermic], although only
the straight-chain esters cleanly yielded their ethers. The other
esters gave mixtures of their ether and the alkoxysilanes Ph-
(H);Si{OCH:R)1—./Ph{(H),Si{OR");—, (x = 1, 2), which resulted
frm further reduction of silyl acetal intermediates PhH,-
Si{OCHROR');—, (eq 4). In a few reactians, these alkirxysilanes
predominated; methyl pivalate- and p-tilyl acetate-derived silyl
acetals,” for example (Table 1, entries 9 and 10), slawly
transformed into their alkoxysilane major products.
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Silyl acetals are observable intermediates as 1 or 2 catalyze
the hydrosilation then reduction i1f 1irganic esters with hydrosi-
lanes. Althiugh detailed mechanistic studies are required. we
offer the folliwing warking hypathesis fir this two-stage process
{Scheme 1). The precatalyst 1 nr 2 first transforms tir a
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Table 1. (PPh3)(CO):MnC(O)CH; (1)-Catalyzed Ester
Hydrosilation with PhSiH3
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2 Reaction conditions: see footnote 6. Reaction times: ester replaced
by mixtures of silyl acetal, ether, and in some reactions alkoxysilanes.
NMR yields obtained after 1 h; isolated yields for 20 mmol scale
reactions after 2 h. ® Analogous silyl acetals Ph,HSi{OCH(OR")R] were
independently synthesized from RC(O)OR’. ¢ 2.0 mmol scale reaction
in 2.0 g Ce¢He; product was isolated by flash chromatography. ¢ 20.0
mmol scale in 10 mL Cg¢Hg; product was distilled. ¢ 40% silyl acetals,
mostly PhSiH[OCH(OMe)CMe;),, and 46% alkoxysilanes, mostly
PhSiH(OCH,CMe;); and PhSiH(OMe),. / Silyl acetals and alkoxysi-
lanes: 16% and 50%, respectively. ¢ Silyl acetals, PhSiH[OCH(CH)(p-
OC¢HiMe)], (49%), and alkoxysilanes, PhSiH(p-OCH,CesHiMe),/
PhSiH(OELt), (46%). " Silyl acetals and alkoxysilanes: 8% and 76%,
respectively. { Integrations approximate; partial overlap with broadened
absorptions due to ring-opening polymerization.

coordinatively unsaturated manganese silyl (L)(CO)sMnSiR; (7),
the active catalyst.® Catalyst 7 ligates and then inserts! the ester
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to give (L)(CO)sMn[CR(OSiR3)(OR")], coordinates HSiR3, and
reductively eliminates the silyl acetal RCH(OSiR3)OR’ plus 7.
In the second stage, (L)(CO)sMnH(SiR3); (i.e., 7 plus HSiR3)'?
transfers hydride to the silyl acetal commensurate with release
of disiloxane, R3SiOSiR3.!!

The proposed activated catalyst 7 (L = CO) apparently can
be generated by photolysis of (CO)sMnSiMe;,Ph in the presence
of excess PhSiH; (eq 1). Irradiation of a CgDg solution
containing CH3C(O)OEt, PhSiH3 (0.50 mmol scale/1.2 equiv),
and 3% (CO)sMnSiMe,Ph at 350 nm (20 °C) thus quantitatively
yielded Et;O within 35 min. Presumably, the photochemically
generated (CO)4MnSiMe,Ph!* transformed to 7 (L = CO) via
established silane exchange.%?

Whether photochemically or thermally generated (from 1 or
2), these manganese carbonyl active catalysts in the presence
of PhSiH; clearly engender a powerful catalytic system for the
hydrosilation then reduction of esters. Studies in progress
address harnessing this reactivity through a second generation
of catalytic systems that more efficiently couple ester hydrosi-
lation with selective reduction to ethers or alkoxysilanes.
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(7) Their NMR spectra resemble those of analogous Ph,SiH-derived
silyl acetals, Ph,SIH[OCH(OR"R] (Table 2, supporting information).
Authentic samples of alkoxysilanes PhSiH3;—,[OCH:R], (x = 1-3; R =
Me, Et, and CMe3) and PhSiH;-,[p-OC¢HaMe], (x = 1,2) were generated
by 1-catalyzed dehydrogenative silation of the requisite alcohol and
PhSiH;.5

(8) Similar active catalysts have been implicated for SiH/SiD isotope
exchange between EtMe,SiH and PhMe,SiD,% for autocatalytic hydrosi-
lation of manganese acyl complexes,®< and for 1- or 2-catalyzed hydrosi-
lation of FpC(O)R complexes or of aldehydes and ketones.®*~%9 (a) Gregg,
B. T.; Cutler, A. R. Organometallics 1993, 12, 2006. (b) Hanna, P. K.;
Gregg, B. T.; Cutler, A. R. Organometallics 1991, 10, 31. (c) Gregg, B.
T.; Cutler, A. R., manuscript submitted.

(9) CO (1 atm) inhibits the hydrosilation of the manganese acetyl
precatalysts.®* Adding the CO after they transformed to active catalysts
also blocked catalytic hydrosilation of organometallic acyl complexes and
ketones.®~¢ Cyclopentene (1 equiv) has no effect on the ethyl acetate
reaction with 3% 1-PhSiHs.

(10) Isolobal examples, e.g., (H)(R3Si)Co(CO); and (H)(R3Si)(R")Co-
(CO)3, are characterized intermediates of similar oxidative addition/reductive
elimination sequences.! (a) Anderson, F. R.; Wrighton, M. S. J. Am. Chem.
Soc. 1984, 106, 995. Wrighton, M. S.; Seitz, M. S. Angew. Chem., Int.
Ed. Engl. 1988, 27, 289. (b) Campion, B. K.; Heyn, R. H.; Tilley, T. D.;
Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 5527 and references cited.
(c) Examples of coordinatively unsaturated (CO)sMnSiR; have been
generated photochemically: Sullivan, R. J.; Brown, T. L. J. Am. Chem.
Soc. 1991, 113, 9155.

(11) A similar pathway evidently operates during the RhCI(PPhs)s-
catalyzed reduction of Cp(L)(CO)FeC(O)CH; to Cp(L)(CO)FeCH,CH3 with
Ph,SiH; or PhSiH3. In these reactions, hydride transfer from (PPhs),(Cl)-
RhH(SiR3) to Cp(L)(CO)FeCH(OSiR3)CH; is presumed to be concerted
with respect to disiloxane loss. (a) Crawford, E. J.; Hanna, P. K.; Cutler,
A.R. J. Am. Chem. Soc. 1989, 111, 6891. (b) Pinkes, J. R.; Mao, Z.; Cutler,
A. R, manuscript in preparation.




